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Risk taking is central to human activity. Consequently, it lies at the
focal point of behavioral sciences such as neuroscience, economics,
and finance. Many influential models from these sciences assume
that financial risk preferences form a stable trait. Is this assump-
tion justified and, if not, what causes the appetite for risk to
fluctuate? We have previously found that traders experience
a sustained increase in the stress hormone cortisol when the
amount of uncertainty, in the form of market volatility, increases.
Here we ask whether these elevated cortisol levels shift risk
preferences. Using a double-blind, placebo-controlled, cross-over
protocol we raised cortisol levels in volunteers over 8 d to the
same extent previously observed in traders. We then tested for
the utility and probability weighting functions underlying their
risk taking and found that participants became more risk-averse.
We also observed that the weighting of probabilities became
more distorted among men relative to women. These results
suggest that risk preferences are highly dynamic. Specifically, the
stress response calibrates risk taking to our circumstances, re-
ducing it in times of prolonged uncertainty, such as a financial
crisis. Physiology-induced shifts in risk preferences may thus be an
underappreciated cause of market instability.

Risk is inescapable. We take risks whenever we play a sport,
enter a personal relationship, or choose a career. In the fi-

nancial sector, the appetite for—and skill at—risk taking among
those working on the world’s trading floors affects the stability of
the market, the growth of the economy, and, through these
effects, the health and well-being of the wider population. A
scientific understanding of risk-taking behavior is therefore of
pressing concern for individual investors, managers of financial
institutions, and policy makers alike.
To address this concern, decision sciences such as economics

and finance have placed risk taking at the very heart of their
research agendas. Historically, many of these sciences have
built theories upon the assumption that people make consistent
choices based on relatively stable preferences through time. Such
an assumption leads to transitive (i.e., noncontradictory, and
therefore rational) choices and permits the building of models
that are tractable and elegant. This assumption of stable risk
preferences has been widely influential in economics and finance
(1–3), and its influence has extended into certain branches of
biology, such as evolutionary game theory (4). However, is this
assumption justified? Are our risk preferences indeed stable?
Since the financial crisis of 2007–2009, evidence has suggested

they are not. For example, a small number of empirical studies
have shown that financial risk preferences do fluctuate (5). In
addition, anecdotal evidence suggests that traders and investors
experience a greater willingness to take risks during a rising
market and a reduced willingness during a falling one. If risk
preferences do indeed move in tandem with the market cycle,
they may exaggerate the peaks and troughs, thereby contributing
to financial instability. What physiological mechanisms could
cause risk preferences to fluctuate in this manner?
The hormone cortisol, a glucocorticoid produced by the ad-

renal glands and one of the main stress hormones, might play
a particularly important role here, because circulating levels of
this hormone increase in situations of novelty, uncertainty, and

uncontrollability (6–8). When in a novel environment or a state
of uncertainty we do not know what to expect, and rising levels of
cortisol help us marshal a preparatory stress response. The fi-
nancial markets present a unique venue for conducting con-
trolled studies of uncertainty and stress because uncertainty in
this setting can be quantified precisely: The greater the un-
certainty, the greater the volatility, measured objectively by the
variance in securities prices. In a previous study we examined the
effects of market volatility on a group of traders in the City of
London and found that as volatility increased over an 8-d period
the traders experienced a 68% increase in their mean daily
cortisol levels (9).
An important question emerged from this fieldwork: Does the

increase in cortisol stemming from market uncertainty in itself
affect risk preferences? If so, do the effects of hypercortisolism
differ between an acute (short-lived, i.e., minutes to hours) and
a chronic (sustained, i.e., days to weeks) exposure?
Acute and chronic exposures to cortisol can have very differ-

ent, and in many cases opposite, effects. Acute cortisol elevation
has been found to increase physical arousal (10), aid in the recall
of important memories (11), and, by interacting with dopami-
nergic pathways in the brain, promote learning, motivated be-
havior, and sensation seeking (12–14). Taken together these
observations might suggest that an acute exposure to cortisol
could promote risk taking, although there is only a limited
amount of literature to support this contention (13, 14). By
contrast, longer-term exposure to raised cortisol levels, as one
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might experience during periods of sustained uncertainty, can
impair many physiological responses. For example, it can con-
tribute to metabolic dysfunction (15) and immunological im-
pairment (16); in the brain, it can impair attentional control and
behavioral flexibility (17–19), and it can promote anxiety (20),
depression (21), and learned helplessness (22). These latter
effects could be expected to discourage risk taking.
We therefore developed the hypothesis that whereas an acute

exposure to raised cortisol levels would have either no significant
effect or, at most, modest ones on promoting risk taking, a chronic
exposure would promote risk aversion.
To test this hypothesis, we conducted a randomized double-

blind, placebo-controlled, cross-over study in which hydrocorti-
sone—the pharmaceutical form of cortisol—or placebo was ad-
ministered to 36 healthy volunteers, 20 men and 16 women, aged
20–36 y, over an 8-d period. Subjects were randomly assigned to
one of three treatment schedules: (i) active–washout–placebo,
(ii) placebo–washout–active, or (iii) placebo–washout–placebo
(this last schedule serving as a control to test for learning effects
during the study). A series of computer tasks were used to measure
participants’ risk preferences under control conditions (placebo-
treated), under conditions of acutely elevated cortisol, and under
chronically elevated cortisol. This protocol permitted us to assess
whether risk preferences remained stable and, if they did not,
whether the fluctuations in risk preference were physiologically
driven, specifically by changes in the level of circulating cortisol.

Results
Individualized Hydrocortisone Dosing Replicates Levels Found in
Traders. We sought to replicate the changes in cortisol levels
observed in the field study of traders (9). Accordingly, we aimed
to raise cortisol levels ∼68% above normal daily requirements
for a period of 8 d.
In brief, participants visited the study site on the first and last

day of each treatment schedule, provided saliva and venous
blood samples, were fitted with a heart rate monitor, and were
then dosed with either hydrocortisone or placebo. Dosing regi-
mens were individualized for each subject using a well-estab-
lished weight-based algorithm (23). After a 90-min wait, to allow
capsule absorption, they provided further saliva and blood
samples immediately before playing the computer tasks. For the
next 7 d participants took hydrocortisone or placebo capsules at
home. To ensure a sustained elevation of cortisol levels with loss
of the normal circadian rhythm, participants took hydrocortisone
tablets three times a day (Methods). They also collected saliva
samples every second day, and these later allowed us to monitor
serial changes in cortisol and to confirm compliance with the
dosing regimens.
Compared with placebo, hydrocortisone treatment increased

salivary cortisol levels acutely on the first day of the study by
235% (panel regression t test, t = 5.00, P < 0.0001, df = 35) and
chronically over the next 8 d by 69% (t = 5.32, P < 0.0001, df =
35) (Fig. 1). Interestingly, in both the active and placebo arms
of the study, cortisol levels on day 7 were higher than during
the intervening days, possibly reflecting participants’ anticipation
of the study tasks and the providing of blood samples. However,
cortisol levels on day 7 in placebo-treated subjects were almost
identical to those at baseline (day 0) (Fig. 1). Importantly,
though, this upward trend from mid-week toward day 7 was
observed with both active and placebo treatment curves, thus
maintaining a relatively constant difference between them. Finally,
we did not observe any significant difference between treat-
ment schedules in men’s testosterone levels or women’s es-
tradiol levels (Methods).

Chronic Exposure to Raised Cortisol Is Not Associated with Changes in
Autonomic Nervous System Function. Cardiac monitoring allowed
us to compare participants’ heart rate and heart rate variability
between treatment schedules, and thereby to assess potential
changes in autonomic nervous system function in response to raised
cortisol levels. Heart rate variability (i.e., the acceleration and

deceleration of the heart rate across the respiratory cycle) is an
important indicator of the relative activation of the sympathetic
to parasympathetic nervous systems: The greater the heart rate
variability, the greater the parasympathetic control (via the vagus
nerve) over the heart (24). In contrast, activation of the sym-
pathetic nervous system, as occurs in stressful situations, reduces
heart rate variability. During the study no significant changes in
heart rate or heart rate variability were observed between treat-
ment schedules (Methods).
The absence of any changes in these cardiac parameters or in

sex steroid levels increases the likelihood that any differences we
observed in risk preferences could be attributed to the elevated
cortisol, and not to secondary effects stemming from changes in
the autonomic nervous system or gonadal function.

Computerized Risk Tasks Show Greater Risk Aversion Under Chronic
Hypercortisolism. Participants played a computerized choice task
that displayed lotteries offering real monetary payoffs (Fig. 2).
We chose this specific task because it is a well-validated means of
gauging changes in risk preferences (25, 26). More importantly,
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Fig. 1. Cumulative exposure to cortisol over 8 d. The acute plot shows av-
erage salivary cortisol levels on the first day of the study, before (day 0, S1)
and 90 min after (day 0, S2) the first dose of hydrocortisone or placebo. The
decline in cortisol levels observed in the placebo arm of day 0 is consistent
with the normal diurnal rhythm of cortisol secretion. The chronic plot shows
average cortisol levels on every second day of the study (days 2, 4, and 6) and
on day 7 during the hydrocortisone and placebo schedules. Results are
shown as means ± SEMs.

Fig. 2. A sample screen from the computerized choice task. Participants
were presented with two lotteries at a time, from which they chose to play
one. In this example, lottery A offers the player the certainty of some return:
a high probability of receiving £30 and a low probability of £90. Lottery B
offers a higher chance of receiving £90 but also some chance of receiving £0.
The expected return of lottery B is high relative to lottery A, but so is its
variance (i.e., the dispersion of possible payouts), which range from £90 to
£0. Lottery B is thus the risky bet, and lottery A the safe bet.
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the lotteries in this task enabled us to separate the participants’
observed risk taking into two components: first, the way they
valued the payouts of the lotteries (i.e., their utility functions)
and, second, the way they weighted the probabilities of each payout
when making their choices (i.e., their probability weighting func-
tions) (26). We will consider each of these functions in turn.
To choose between two lotteries, a person could compare each

lottery’s expected return, that is, its payout multiplied by its
probability. A gamble that pays £100 with a 50% chance of win-
ning has an expected return of £50, as does one with a £1,000
payout and a 5% chance of winning. Here the expected returns of
the two bets are equal. One might assume people to be indifferent
when choosing between these two bets. However, previous studies
have found that people on average are not (27); they tend to
choose the safer bet (i.e., the one offering the higher chance of
winning, even if the actual payout is lower). They are, in short,
risk-averse. The reason often proposed by psychologists and
economists for this observation is that most people value the first
£50 of winnings more than they do, say, the £50 that takes their
winnings from £950 to £1,000. Stated in terms of what is called

expected utility theory, most people derive a declining marginal
utility from each increment in a bet’s payoff. Economists accord-
ingly depict risk aversion graphically as a utility curve with a concave
shape (Fig. 3A). The flatter this curve, the greater an individual’s
risk aversion.
In the present study participants exhibited typical risk aver-

sion, with the average utility curve under placebo conditions
displaying a concave shape (Fig. 3A). Indeed, the estimated co-
efficient of risk aversion, which determines the curvature in the
average utility function, was r = 0.50, a value consistent with esti-
mates reported in previous empirical studies (28, 29) (Supporting
Information).
We used a maximum likelihood estimation for all analyses of

utility functions and Z-tests for tests of statistical significance.
We found no evidence of learning effects on the computer tasks
(Methods), nor did we find any significant difference in utility
curves, and therefore risk aversion, between men and women
(two-tailed Z-test, P = 0.572, n = 36). Previous work has sug-
gested that women are more risk-averse than men (30). Although
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Fig. 3. Effect of cortisol on risk aversion. (A) Changes in
risk aversion as measured by the curvature of the utility
function. Utility curves were averaged from all partic-
ipants in the study. Utility can be thought of as the
participants’ subjective valuation of the monetary out-
comes. Most people derive a decreasing marginal utility
from each increment in a bet’s payoff and are there-
fore risk-averse. The flatter their utility curve, the
greater their risk aversion. (B) A sample lottery choice
under placebo, acute, and chronically raised cortisol. In
this sample choice, under chronically elevated cortisol,
participants preferred the safer lottery C (P = 0.04). (C)
Changes in the expected return and variance of the
chosen lotteries. Under chronically raised cortisol
participants chose safer lotteries (i.e., ones with lower
payoffs and a lower variance of possible payoffs).
Results are shown as means ± SEMs.
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our results have the limitation of a relatively small sample size,
they nonetheless provide no support for this conclusion.
Next, we compared utility curves, averaged from all partic-

ipants, for each treatment schedule. We found no significant
difference between the average utility curve when participants
received an acute dose of cortisol and their curve when receiving
placebo (two-tailed Z-test, P = 0.328, n = 36) (Fig. 3A). In
marked contrast, when participants were exposed to a sustained
elevation in cortisol over 8 d, their utility curves became more
concave (i.e., they displayed a greater risk aversion) (two-tailed
Z-test, P = 0.022, n = 36). This result is robust to other speci-
fications of the utility function, such as the normalized constant
risk aversion utility function (two-tailed Z-test, P < 0.001, n = 36)
(Supporting Information).
An alternative way of analyzing the data is to look at the

expected return and variance of the chosen lotteries, the variance
being a measure of the dispersion of possible payouts. Under the
influence of chronically elevated cortisol the participants pre-
ferred safer lotteries, in other words, ones with a lower expected
return (linear regression; two-tailed t test, t = 4.54, P < 0.001, n =
36) and a lower variance of return (linear regression; two-tailed
t test, t = 2.28, P = 0.029, n = 36) (Fig. 3 B and C) than they did
under placebo.
The effect size of the observed change in risk aversion was

large, with the coefficient of risk aversion dropping from 0.50 to
0.35, this 0.15 change representing one SD in the distribution of
individual risk aversion observed in previous studies (28, 29).
This effect size is perhaps more intuitively represented by
translating it into changes in the “certainty equivalent” (i.e., the
amount of cash a person would accept as a replacement for
taking a gamble). For example, flipping a coin with a payoff of
£100 for heads, £0 for tails, is a lottery (a gamble) with an
expected return of £50. If a person would accept a guaranteed
payment of, say, £30 or more instead of playing this lottery, then
this amount is defined as his or her certainty equivalent. The
difference between the £30 and the gamble’s £50 expected return
is called the risk premium—the amount of extra return a person
requires for taking risk—and is a measure of this person’s risk
aversion. In our study, participants under placebo had a certainty
equivalent of £25; under sustained cortisol exposure this number
fell to £14, a decrease of 44%.
Moving from between-group results to within-subject mea-

sures, we looked at how variations in each participant’s cortisol
levels predicted his or her risk aversion. We used within-subject
variations in cortisol levels (relative to day 0) as a predictor in the
model estimating risk aversion. We found that under chronic

conditions higher levels of cortisol predicted greater risk aver-
sion (two-tailed Z-test, P = 0.002, n = 28).

Chronic Hypercortisolism Distorts the Probability Weighting Function.
Next, we examined the effect of changing cortisol levels on each
participant’s probability weighting function. This function shows
how a person judges the significance of a probability when making
choices. People tend to behave differently when presented with
equal changes in probabilities. For example, when making
decisions, people often treat an increase in probability from 5%
to 10% as a more significant change than one from 40% to 45%.
In general, there is a tendency to overweight small probabilities
and underweight large probabilities. If we represent probabilities
graphically, then a linear increase in objective probability from
0% to 100% can be plotted as a 45° line and the subjective
weighting function as an S-shape, snaking around this 45° line
(31, 32) (Fig. 4).
Examination of the participants’ probability weighting func-

tion revealed a significant sex interaction under conditions of
chronically elevated cortisol, with the weighting of probabilities
changing significantly in men (two-tailed Z-test, P = 0.028, n =
36), but not in women. Specifically, relative to women, male
subjects exhibited greater sensitivity to small probabilities and
less to large ones (two-tailed Z-test, P = 0.014) (Fig. 4) (see also
refs. 14, 33, and 34).
The probability weighting function underlies an alternative

model of risk aversion developed by behavioral economists,
known as the rank-dependent expected utility function (32). It
differs from the classical expected utility model because proba-
bility weights can adopt the S-shape depicted above and there-
fore have a nonlinear effect on the utility function (Supporting
Information). We therefore repeated the analysis of risk aversion
using the probability weighting function. We found that under
chronically raised cortisol participants’ risk aversion, as measured
by rank-dependent expected utility, increased significantly (two-
tailed t test, P = 0.023, n = 36). When we reran the within-subjects
analysis we found once again that participants’ cortisol levels
predicted their rank-dependent risk aversion (two-tailed Z-test,
P = 0.004, n = 28).

Discussion
We have found that an acute elevation of cortisol has no sig-
nificant effect on financial risk taking whereas a sustained ele-
vation leads to greater risk aversion (Fig. 3A), with study
participants preferring lower expected return and lower-variance
bets (Fig. 3 B and C).
In designing our protocol we have at all times tried to maintain

ecological validity. We did so by combining field work with
laboratory work. Specifically, we began, in a previous study, by
observing a chronic elevation in cortisol levels among a group of
traders in the City of London during a period of market vola-
tility; we followed this, in the present study, by inducing among
a group of volunteers the same cortisol increases, for the same
period, as observed in the traders (9). The field work ensured
that we were studying physiology and behavior that do in fact
occur in the financial world; the present laboratory-based study
permitted us to analyze in a more controlled manner the effects
of these hormonal changes on risk preferences.
There are two other aspects of our dosing regimen that merit

consideration. First, we have targeted changes in cortisol levels
that fall within a normal physiological range, thus avoiding the
pitfalls of extrapolating to normal subjects findings that may be
relevant only to subjects exposed to supraphysiologic glucocor-
ticoid concentrations. Second, our dosing protocol tailored the
hydrocortisone dose to each individual, rather than using a “one-
size-fits-all” approach. Dosing was individualized by weight,
and the hydrocortisone was delivered three times a day to sup-
press cortisol’s normal diurnal rhythm. We adapted a protocol
used with patients suffering adrenal failure, and it proved re-
markably accurate: The traders followed in the previous study
experienced a 68% increase in cortisol levels over an 8-d period,

0.2 0.4 0.6 0.8 1.0

Probability

B

W
ei

gh
tin

g

0

0.2

0.4

0.6

0.8

1.0

0

A

0.2 0.4 0.6 0.8 1.0

Probability

W
ei

gh
tin

g

0

0.2

0.4

0.6

0.8

1.0

0

Placebo Chronic cortisol

WomenMen

Fig. 4. Probability weighting functions. The 45° line represents a linear
increase in objective probability from 0% to 100%. The inverted S-shape
curve centered on the 45° line represents the weighting of probabilities
people display when making choices. When compared with placebo (A),
under conditions of chronically elevated cortisol (B), men relative to women
become more sensitive to small probabilities and less sensitive to large
probabilities.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1317908111 Kandasamy et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1317908111/-/DCSupplemental/pnas.201317908SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1317908111/-/DCSupplemental/pnas.201317908SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1317908111/-/DCSupplemental/pnas.201317908SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1317908111


and in the current study we raised participants’ cortisol levels by
69% over the same period (Fig. 1).
The effects of chronic hypercortisolism on our participants

were large, so we should briefly consider the likely neural mecha-
nisms through which cortisol could have exerted its effects. Pre-
vious studies have shown that glucocorticoids have dramatic
effects on the brain. In the hippocampus, chronically elevated
glucocorticoids can reduce spine density, suppress neurogenesis,
and reduce hippocampal volume (21, 35). In the amygdala, glu-
cocorticoids can cause dendritic arborization (36) and promote
corticotrophin-releasing hormone gene expression, with a result-
ing anxiety (20, 37). Together these effects are thought to underlie
the observed tendency of chronically stressed individuals to de-
velop a selective attention to negative precedents, to find threat
where none exists, and even to experience depression and learned
helplessness (20–22). Although full morphological changes in
the brain occur over a long time period, many of the central effects
of elevated cortisol, even over an 8-d period, could begin to
promote an aversion to uncertainty and potential monetary
loss. As an aside, our findings also suggest that risk aversion
could well be an unwanted consequence of medically prescribed
long-term synthetic glucocorticoid therapy (e.g., prednisolone or
dexamethasone).
The prefrontal cortex (PFC) is also an important target for

glucocorticoids. Chronically elevated glucocorticoids, acting on
the PFC, can impair working memory, reduce attentional con-
trol, and limit behavioral flexibility (17–19). These effects on the
PFC raise the possibility that chronic stress may shift a person’s
decision making from goal-directed processes to more habitual
ones (38, 39), and it may reduce their motivation and ability to
consider novel actions (40). Risk taking requires that we search
across a range of opportunities, but stress, by limiting attentional
shift and behavioral flexibility, may constrain our choices to
those that are familiar and require the least amount of search. In
the financial markets, during times of crisis participants display
a strong preference for familiar securities, such as government
bonds and home markets.
Our findings have relevance for economics and finance. It is

widely assumed in these sciences that risk preferences, or more
precisely the utility functions underlying risk preferences, remain
largely constant through time (1–3). We find, on the contrary,
that financial risk preferences shift, and do so substantially. We
further find that these shifts occur under the influence of a phys-
iological mechanism, specifically the stress response. Economics,
and the financial world more generally, could therefore benefit
from considering the effects of physiology on risk taking. Existing
research on risk taking proceeds largely within a paradigm of
cognitive processing. However, when people take risk, in-
cluding financial risk, they do more than just think about it—they
prepare for it physically (41). Their endocrine, metabolic, and
cardiovascular systems prime them for impending activity, and
these changes then feedback on the brain (42, 43), calibrating
their appetite for risk to current circumstances (34). Our findings
suggest that when people are stressed by chronic uncertainty or
uncontrollable threat their endocrine systems discourage them
from taking risk.
It is worth pointing out that the rise in cortisol we observed in

the trading floor study, and replicated among participants in the
current study, was in line with that found in other studies of
moderately stressed individuals (44). We should add, however,
that such a cortisol increment is relatively modest compared with
the increases that can be observed in individuals subjected to major
physiological stressors such as trauma or anesthesia/surgery, where
a 400–500% rise is not uncommon (45). It is difficult to say
whether cortisol levels could rise this high in the financial world.
However, we do know that during the credit crisis of 2007–2009
volatility in, for example, US equities spiked from 12% to over
70%. It seems reasonable to assume that such historically high
levels of uncertainty would have caused stress hormones to rise
substantially, and for a much longer period than we observed in
our study. It is therefore possible that rising stress hormones

contributed to the wide-spread risk aversion during the crisis that
came to be known as “irrational pessimism.”
Indeed, our findings point to an alternative model of risk

taking. In it risk preferences are not stable; rather, they are
highly dynamic. Such a model might help explain why the risk
premium on equities rises and falls with volatility (46), and why
the appetite for risk among the financial community seems to
expand during a rising market, and contract during a declining
one. Critically, if cortisol responds powerfully to increases in
uncertainty and volatility, and volatility rises most strongly during
a financial crisis, then risk taking may decrease just when the
economy needs it most: when markets are crashing and need
traders and investors to buy distressed assets. Physiologically
driven shifts in risk preferences may thus be a source of financial
market instability that has been overlooked by economists, risk
managers, and central bankers alike.

Methods
Hydrocortisone Dosing Algorithms. Hydrocortisone dosages were calculated
using a weight-based algorithm, which allows the prediction of total daily
hydrocortisone requirements in subjects who have had both adrenal glands
surgically removed or suffered total adrenal failure (23). In healthy subjects,
cortisol levels rise just after waking and decline over the day, but in
chronically stressed individuals levels remain high throughout the day. To
mimic the diurnal cortisol pattern of a chronically stressed individual, we
required subjects to take their hydrocortisone in three divided doses, at
7:00 AM, 1:00 PM, and 7:00 PM. Hydrocortisone (5 mg) and placebo capsules
were manufactured to be indistinguishable from each other (Pharmacy
Technical Services, St. George’s Hospital, NHS Trust). Participants kept a
tablet diary and returned any unused tablets at the end of each study phase;
together with monitoring of salivary cortisol levels, these were used to
confirm compliance with the prescribed regimen.

Serum and Saliva Collection. Whole blood (5mL) was taken into serum tubes
following standard venipuncture. Samples collected on days 0 and 7 of each
treatment schedule were centrifuged and separated within 30 min and
stored at −80 °C. Saliva (2 mL) was collected by passive drool using Greiner
cryovials according to the manufacturer’s instructions. Participants kept
saliva samples collected on days 2, 4, and 6 of each treatment schedule in
a refrigerator at 4 °C and returned these on day 7. Following centrifuga-
tion these samples were also stored at −80 °C.

All samples were batch-analyzed. Salivary cortisol was measured using
a competitive immunoassay (Salimetrics) with each measurement performed
in duplicate. Serum cortisol was measured in the Cambridge University
Hospitals NHS Foundation Trust Clinical Pathology Accreditation laboratory
using a competitive immunoassay (ADVIA Centaur; Siemens). The intraassay
coefficient of variation in all assays was <4%.

Our results were robust to the use of salivary or serummeasures. However,
because we collected only salivary samples between participants’ visits to the
test site, we have reported salivary measures in the main text.

Cardiac Monitoring of Heart Rate and Heart-Rate Variability. Participants were
fitted with a two-lead portable cardiac monitor (Actiwave Cardio; CamN-
Tech Ltd) at the start of each visit to the study center. Heart rate (HR) and
interbeat intervals were recorded before and during the four times the
participants played the lottery tasks. Heart-rate variability (HRV) was
assessed using the square root of the mean of the sum of the squares of
differences between adjacent NN intervals. We compared HR and HRV data
both by treatment (i.e., placebo or active) and by task using a random
effects generalized least squares regression. We found no effects of treat-
ment schedule (HR P = 0.3798, HRV P = 0.4971) or task (HR P = 0.4263, HRV
P = 0.7153) or of treatment × task (HR P = 0.6183, HRV P = 0.8916).

Sampling of Sex Steroids.We sampled sex steroids on days 0, 2, 4, 6, and 7. We
did not specifically control for the phase of each female participant’s men-
strual cycle, but we found that mean estradiol levels between treatment
schedules were not significantly different (t = 1.59, P = 0.138, n = 15). Men’s
testosterone levels also did not differ (t = 1.09 P = 0.296, n = 13).

Recruitment and Monetary Payments. Participants were recruited from the
general population by means of advertisements. Randomization into
treatment schedules (discussed above) was performed separately for men
and women to ensure an approximately equal number in each treatment
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schedule. Participants were paid £100 to take part in the study. They were
also offered an additional payment, based on their risk choices during the
tasks. This variable payment had a maximum value of £165. Participants
could thus receive up to a total of £265. To determine the variable portion of
the payment, a single lottery choice made by each participant was chosen at
random. All subjects signed an informed consent form. The study was
approved by the ethics committee of the School of Biological Sciences at
the University of Cambridge.

Computer Tasks. At each visit, participants were presented with 45 different
lottery pairs and took on average 25–30 min to complete the full series.
Because each participant played the task on four separate days, they made
a total of 4 × 45 = 180 lottery choices. Results of the computerized risk tasks
performed on the first day of the study were used to gauge the effects of an
acute elevation of cortisol, and those on the seventh day the effects of a
chronic elevation.

Statistical Analysis. We did not observe any learning effects on risk prefer-
ences. A group of eight subjects were assigned to the placebo–washout–
placebo arm and we did not observe any significant changes in their risk
preferences over time (two-tailed Z-test, P = 0.787, n = 8). We also did not
find any significant differences in risk preferences on days 0 and 7 of the
placebo phase of each treatment schedule, whether this was on the pla-
cebo–washout–active schedule (two-tailed Z-test, P = 0.311, n = 14) or the
active–washout–placebo schedule (two-tailed Z-test, P = 0.459, n = 14).

Coefficients’ SEs were computed using a clustered robust matrix of vari-
ance to control for the fact that participants were making several choices

and that different choices from a given individual cannot be considered
independent (25). In all statistical tests, however, the number N represented
the number of participants (and therefore of clusters), not the number of
choices. By default, we used between-subject analysis, including all our
subjects, with n = 36. We complemented these analyses with some within-
subject estimation, which involved dropping the eight participants who
were assigned to the placebo–placebo arm, giving us n = 28.

All tests of significance for the parameters of the utility model are Z-tests
derived from the maximum likelihood estimations of the model with n = 36
participants. Because these tests are asymptotic, we indicated the number of
participants (i.e., cluster of observations) with which the tests are computed,
to clearly indicate the relative sample size and give an indication of the
power of the tests. We used a regression model to measure the statistical
significance of the differences in expected return and variance of the chosen
lotteries as observed in Fig. 3C. This statistical method also allowed us to
use a clustered robust matrix of variance. All tests of significance for the
parameters estimated by these linear regressions are Student t tests with
n = 36 participants. We reported test statistics for the t tests and the
number of participants (clusters of observations).
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