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Volatility forecasting has paramount importance in position sizing and risk management of CTAs. In this 

paper we examine the out-of-sample forecasts of widely used volatility estimators for the S&P 500 and 

the 10-Year US Note from a statistical and Value-at-Risk perspective. Although we do not find evidence 

for a volatility estimator that is statistically superior, we show that the volatility process of each asset is 

different with asymmetric GARCH models generating superior forecasts for the S&P 500, whereas 

symmetric GARCH, the Yang-Zhang estimator along with the implied volatility forecasting better the 10-

Year US Note volatility. We also show that the volatility of the 10-Year US Note is more forecastable 

than that of the S&P 500 producing smaller errors. More importantly, we find that improving the 

volatility forecast can generate superior VaR estimates that can be accurate under the normal distribution 

failing only at the lowest quantiles mainly because the distribution is mispecified and badly approximated 

by the normal. Semi-parametric QML-GARCH models that use the empirical quantiles of the distribution 

along with GARCH forecasts address that issue and generate superior VaR estimates outperforming all 

other methods. 
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1. Introduction 

Volatility is one of the most important variables in finance with applications in risk and portfolio 

management, option pricing, hedging and trading. It is also of paramount importance in the Commodity 

Trading Advisors (CTA) space as the majority of them target a specific volatility level and size their 

positions based on some estimate of volatility as a proxy for risk. It is also highly relevant for risk parity 

strategies whose mandate is to allocate risk equally along different assets. In fact, there is a vast and 

growing literature about the merits of volatility weighting in asset allocation and position sizing. Fleming 

et al. (2001) and Hallerbach (2012) show that volatility timing and weighting improve the performance of 

strategies, while Baltas and Kosowski (2012) find that a more efficient and less biased volatility estimator 

can improve the performance of a trend-following strategy that sizes positions inversely to volatility.  

The difficulty in evaluating and comparing different volatility forecasts is that volatility is unobservable 

even ex-post. A direct way to get around this problem is to use a volatility proxy which is an observable 

variable and is related to the -true- volatility (e.g. squared returns). There is also an indirect way to 

circumvent that problem based on economic evaluation of volatility models placing them in the context of 

VaR. In this paper, we deploy both approaches, evaluating different volatility forecasting models and 

methods from a statistical and a Value-at-Risk (VaR) perspective, which have direct implications on 

position sizing and risk management for CTAs. Our purpose is twofold: 1) compare different volatility 

estimators that can be used in the context of position sizing and help CTAs realized volatility to match 

their target volatility, and 2) examine the accuracy of different VaR methods in estimating the risk of 

futures contracts that can be used in the risk management. We focus our analysis on two futures contracts: 

E-mini S&P 500 and 10-Year US Note; the most liquid futures contracts representing the two major asset 

classes.  

According to DeSantis et al. (2003), for practitioners, the challenge is to find a volatility estimator that 

strikes a balanced compromise between statistical sophistication and parsimony. On the one hand we 

want an estimator that captures as many empirical regularities as possible; but, on the other hand, we want 

it to be as parsimonious as possible and easy to estimate. For that reason, we focus our analysis on four 

different types of volatility estimators: the simple close-to-close; range-based estimates using open, high 

and low prices other than the close; GARCH-type; and implied volatility derived from the options market. 

As we show, all estimators contain some unique information but they are highly correlated to one another 

with implied volatility containing the most unique information. 

Starting from the statistical evaluation, there are two major ways to improve the process. The first is the 

use of different and less noisy volatility proxies other than squared returns. As Andersen and Bollerslev 

(1998) show, a noisy volatility proxy such as the daily squared returns can lead to severe underestimation 

of volatility forecastability. We address that by using the realized volatility (sum of 5-minute squared 

returns) and the adjusted range along with squared returns. The second is the use of a test that is robust to 

the noise of the volatility proxy and to the conditional distribution of returns, based on Patton’s (2010) 

finding that the use of non-robust loss functions can lead to incorrect inferences and selection of inferior 

forecasts over better forecasts. To address those issues we use the loss-functions that Patton identifies as 

robust, Mean-Squared Error and Quasi-Likelihood loss, along with the Diebold-Mariano test for superior 

forecasting ability. 
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Although, the results from the one day-ahead out-of-sample forecasts do not reveal any clear winner, 

GARCH models tend to rank among the best. More specifically, we find that the asymmetric models 

(TARCH and EGARCH) offer superior forecasts for the S&P 500 whereas the implied volatility and 

range-based models rank among the worst. On the contrary, implied volatility and range-based models 

appear to generate superior forecasts for the 10-year Note, depending on the volatility proxy.  

We deploy the same models under the analytic VaR framework using the normal distribution quantiles 

multiplied by the volatility forecasts and also GARCH estimated empirical quantiles multiplied by 

GARCH volatility forecasts. Since CTAs trade both from the long and short side, we model VaR for both 

sides of the distribution. We examine the accuracy of VaR forecasts for different quantiles using the 

evaluation framework of Christoffersen (1998) testing for unconditional coverage and independence of 

VaR violations. 

Our results show that improving the volatility forecast can generate superior parametric VaR forecasts 

that can be accurate even under the normal distribution failing only at the lower quantiles (1%). The 

ability of GARCH models to produce superior volatility forecasts is confirmed under the VaR forecast 

evaluation framework producing the most accurate parametric VaR forecasts. Nevertheless, all the 

parametric VaR models fail at the lowest quantile (1%). The reason for their failure is not the quality of 

the volatility forecast but the fact that the distribution is mispecified and badly approximated by the 

normal exhibiting asymmetry and fatter tails.  We show that the semi-parametric Quasi-Maximum 

Likelihood GARCH models that use the empirical quantiles of the distribution along with GARCH 

volatility forecast address that issue producing superior VaR forecasts outperforming all other methods 

for all quantiles. 

The remainder of that paper is organized as follows. Section 2 briefly summarizes the different volatility 

models and VaR methodologies we use. Section 3 describes the tests used to evaluate the different 

volatility and VaR forecasts. In Section 4 we describe the data and present the empirical results of the 

alternative forecasting methods. Finally, Section 5 concludes. 

 

2. Volatility Models and Value-at-Risk Methods 
 

2.1 ‘True’ Volatility Proxies 

Before looking at different volatility estimators, it is important to realize that since volatility is not an 

observed variable there is no true volatility and we have to use volatility proxies. As Anderson et al and 

Patton have shown using an accurate volatility proxy is very important in the evaluation of volatility 

forecasts and comparison of different models. A noisy volatility proxy can result in a rejection of a good 

volatility estimator and underestimate its forecasting power. 

We address those issues by using the following different volatility proxies: 

The commonly used squared daily return: 

           

The adjusted squared daily range defined as: 
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Where the adjustment factor 
 

     ( )
 is needed to make the squared range unbiased for the daily volatility 

of a Brownian motion without a drift.  

Finally for the S&P 500 we used the 5-minute realized variance defined as the sum of 5-minute squared 

log returns: 

    ∑      
 

 

   

 

Recent academic research from Andersen et al. (1998) and Li et al. (2012) has suggested that the 5-

minute realized volatility estimator is the best volatility proxy to evaluate and compare different volatility 

forecasts.  

In Table 1 we estimate the correlations of the three volatility proxies for the S&P 500. We can see that 

each proxy contains a different set of information:  Realized volatility (RV) and adjusted range (RG) are 

the closest proxies in line with the finding of Andersen et al. (1998) that daily range has approximately 

the same informational content as sampling intraday returns every two-three hours. 

[Table 1 about here] 

 

2.2 Volatility Models 

Standard Deviation 

The most widely used volatility estimator is the standard deviation, where N equals the number of 

observations (look-back period) and   
  is the daily squared return estimated from close prices.  

     √
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Since the estimation of the mean from daily returns can be noisy and zero mean return is a good 

approximation for most financial series, we exclude the mean from all volatility estimators.  

There are a number of alternative volatility estimators that have been developed to address some of the 

shortcomings of the standard deviation.  

Parkinson (1980)  

The Parkinson estimator uses the daily range (high and low) to estimate the volatility.  
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Garman and Klass (1980)  

The Garman and Klass estimator mixes the daily range with the close-to-close return and is more efficient 

than Parkinson on the assumption that the data follows a geometric Brownian motion without a drift. 
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Rogers and Satchell (1991)  

Rogers and Satchell estimator addresses the issue of a geometric Brownian motion with zero-drift that 

both Parkinson and Garman and Klass estimators miss, by using the open prices. 
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Intuitively the above estimators are more efficient than the simple close-to-close standard deviation 

because a) they use more information than just the close price, so they should converge faster to the ‘true’ 

volatility, and b) including the range gives more accurate volatility estimate on volatile days where the 

close was near previous days’ close. Nonetheless, as we show later, the use of prices only from the pit 

trading hours can ends up underestimating the true volatility due to the omission of the overnight moves.   

Yang and Zhang (2002)  

Yang and Zhang estimator tries to address the shortcomings of the above estimators by accounting for 

overnight moves and is independent of the drift. It is a weighted average of RS, close-to-open and open-to 

-close volatility.  
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Sampling Error 
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All the estimators above have a look-back period which means that they are subject to sampling error. We 

adjust for that by dividing the estimated volatility by the adjustment factor as shown by Sinclair (2008): 

 ( )   √
 

 
 

  (
 
 
)

  (
   

 )
 

Where N is the sample size and Γ is the gamma function. 

We divide our volatility estimates by the adjustment factor to get the ‘unbiased’ volatility that we use. 

Although the above estimators are more efficient than the standard deviation by incorporating more 

information, they do not incorporate empirical regularities of the financial times series. Specifically, 

volatility of the financial time series exhibits some well-known effects: 1) it is time-varying, 2) it clusters 

(squared and absolute returns exhibit high degree of autocorrelation which allows us to consider volatility 

as almost stable in the short run), and 3) it tends to mean-revert. 

Exponential Weighted Moving Average (EWMA) 

The RiskMetrics (1996) approach is built upon the first two effects. Variance is modeled using an 

exponential moving average (EWMA) where the estimate for time t is a weighted average of the previous 

estimates. Symbolically this is: 

          (   )    
  

Where   is the decay factor. The most recent observations receive higher weights and the weights on the 

past observations decrease geometrically. The half-life of the number of days used in estimation can be 

derived by the fraction ln(2)/ln( ). We will be using the same parameter that RiskMetrics recommends (  

=0.94 which corresponds to 17-day half-life). The advantage of this model is its simplicity and easiness of 

its estimation. Its main weaknesses are 1) it assumes that returns are iid and normally distributed, 2) 

shocks persist forever, and 3) the volatility for tomorrow is today’s volatility. 

GARCH  

The GARCH model proposed by Engle (1982) and Bollerslev (1986) uses all 3 characteristics to model 

the variance.  It assumes that variance is time-varying exhibiting high degree of auto-correlation but 

reverts back to its long-term average. The simplest GARCH (1,1) equation can be written as: 

           
       

The ratio  ̅   
 

(        ) 
 equals the long-term (unconditional) variance assuming that the model is 

covariance stationary (  +   <1). The sum   +   is the persistence term that controls for the speed of 

mean reversion and the ratio of ln(0.5)/(   +  ) is the half-life of mean reversion that measures the 

average time it takes for a shock   - ̅   to decrease by half. If   +   >1 the GARCH model is non-

stationary and the volatility will eventually explode.  

Asymmetric Volatility Effects  
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In some assets volatility tends to respond differently to the sign of past returns. For example in equities it 

is well documented that volatility tends to increase more after big down days than big up days. We test for 

asymmetric effects applying the regression tests used by Engle and Ng (1993).  

    
              

Where     
  is the daily volatility proxy squared and    is a variable constructed from the daily return 

(  ) and its sign. More specifically, in the Sign Bias test it takes the value of 1 if the return is negative and 

zero otherwise; in the Negative Size Bias test it takes the value of   when the latter is negative and zero 

otherwise; and in the Positive Size Bias test it takes the value of   when the latter is positive and zero 

otherwise. Table 2 reports the results. 

[Table 2 about here] 

There is clear evidence for asymmetric volatility effects in the S&P 500; the Sign Bias test shows 

statistically significant results and the Negative Size Bias t-stats are higher in magnitude than the Positive 

Size Bias ones. The results hold for all volatility proxies. On the contrary, the evidence for asymmetric 

volatility effects on the 10-Year Note is mixed. The Sign Bias test is not statistically significant for both 

volatility proxies, while the Negative Size Bias is higher in magnitude than the Positive Size Bias when 

the squared return is used but not when the adjusted squared range is used. Bonds seem to respond 

symmetrically to volatility shocks. Overall, there is strong evidence for asymmetric effects in the S&P 

500 and so we would expect asymmetric models to perform better than symmetric ones, whereas there is 

no evidence for asymmetric effects in US 10-Year Note and so we would expect symmetric models to be 

a better fit. 

To consider asymmetric effects in volatility estimation and forecasting we apply the two most well-

known asymmetric GARCH models: TARCH (or GJR-GARCH) and EGARCH. 

Threshold ARCH (TARCH) 

Threshold ARCH (Glosten et al. (1993)) captures the asymmetry in volatility by introducing a dummy 

variable I(t) in the GARCH equation that takes the value of 1 if the previous return is below a certain 

threshold (we use zero as our threshold). More specifically its variance equation is: 

       (     (    ))    
       

Where the ratio  ̅   
 

(            ) 
 equals the long term variance and the ratio of ln(0.5)/(   +  +  /2) is 

the half-life of mean reversion. Negative (positive) values for   indicate increase in volatility after 

negative (positive) shocks. 

Exponential GARCH (EGARCH) 

Exponential GARCH (Nelson (1991)) models the log of the variance as: 

   (    )    (  |  |    |  |      )       (  ) 
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where           and   |  |  √   . Negative (positive) values for   indicate increase in volatility 

after negative (positive) shocks. The long term log variance equals    ̅   
 

(    ) 
. 

The main advantage of the EGARCH model is that it models the logarithm of variance and so the 

positivity of variance is automatically satisfied without requiring restrictions on the maximization of the 

log likelihood function.   

GARCH Criticism 

GARCH models are non-linear which means that their parameter estimation depends on an optimization 

routine that is sensitive to a) starting values, b) algorithm and software used, c) training period, d) 

maximum likelihood function (usually the normal distribution) and e) number of parameters. Differences 

in those specifications can result in different results. Furthermore, as Engle and Manganelli (2001) 

mention, all GARCH-type models are subject to three different sources of misspecification: the variance 

equation and the distribution chosen for the log-likelihood may be wrong and the standardized residuals 

may not be identically and independently distributed (iid). Nevertheless, GARCH models appear to fit the 

empirical data quite well and are used extensively in industry and academia. 

 

2.3 VaR Methodologies 

VaR measures the maximum expected loss over a certain horizon with a given probability. Since this 

number depends on the confidence level we examine three different quantiles (1%, 5% and 10%) of both 

sides of the distribution to get a better understanding of the tails. We look at two different methodologies 

of VaR forecasting that are the most prevalent in the industry because of their relative computational 

easiness and low complexity.  

Parametric 

The VaR computation can be simplified considerably if the distribution is assumed to belong to a 

parametric family such as the normal distribution. This way VaR can be derived directly from the 

volatility using a multiplicative factor that depends on the confidence level. In this paper we estimate the 

parametric VaR by multiplying each conditional volatility estimation by the standardized normal 

distribution quantiles.  

Semi-Parametric: Quasi-Maximum Likelihood GARCH (QML GARCH) 

According to Alexander (2008), VaR estimation using analytic GARCH ignores the purpose of GARCH 

(volatility clustering after a market shock) because we assume away the possibility of a shock by simply 

plugging in the GARCH volatility into a VaR formula. Also, using GARCH in a normal linear VaR is 

wrong from a theoretical standpoint since the VaR analytic formula assumes that returns are normal 

whereas GARCH assumes that they follow a normal GARCH process. In othe words, the use of GARCH 

in the analytic normal linear VaR is not correct and introduces an approximation error. 

Bollerslev and Woolridge (1992) showed that the maximization of the normal GARCH likelihood is able 

to deliver consistent estimates, provided that the variance equation is correctly specified, even if the 
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standardized residuals are not normally distributed. Using that result, Engle and Manganelli (1999), 

compute the VaR by first fitting a GARCH model and then multiplying the empirical quantile of the 

standardized residuals by the square root of the estimated variance. We employ the same procedure using 

all three GARCH models. 

 

3. Forecast Evaluation 

 
3.1 Volatility Forecast Evaluation 

Loss Functions 

We measure the predictive accuracy of each volatility estimator by the average forecast loss. The more 

accurate the model, the lower its average loss should be. As Patton (2010) showed, apart from an accurate 

volatility proxy, a robust loss function is required to compare different volatility forecasts in the sense that 

they asymptotically generate the same ranking of models regardless of the proxy for the true volatility. 

Following Patton (2010) we use the Quasi-Likelihood and Mean Squared Error loss functions.  

Quasi-Likelihood Loss (QL) 

   ∑  
  

 

  
    

  
 

  
   

     

 

Root Mean Squared Error (RMSE) 

     √
∑ (  

    )
  

   

 
  

Similar to Brownless et al. (2014) we prefer the QL loss function because 1) the loss series is iid under 

the null hypothesis that the forecasting model is correctly specified, whereas MSE loss series exhibits 

high degree of autocorrelation even under the null, and 2) MSE has a bias that depends on the level of 

volatility whereas QL is independent of the level.   

Pairwise Comparison of Volatility Forecasts 

We use the Diebold-Mariano test (DM) to compare in a pairwise fashion the forecasts using the QL loss 

function for the reasons explained above. The DM test tests the null hypothesis of equal predictive 

accuracy against the alternative that a forecast is superior. Since true volatility is unobservable, the test is 

implemented using a statistic based on the difference between QL losses measured using all different 

volatility proxies. More specifically, 

               

is the difference between the QL losses of A and B. Negative (Positive) d values mean that the forecast A 

is less (more) accurate than forecast B. The DM test statistic is computed using a standardized t-test: 
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Where  ̅  
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 is the average difference between the QL losses and avar is a consistent estimate of the 

variance of     ̅ to account for the serial correlation of the loss differentials. We use the Newey-West 

variance estimator as recommended by Dieblod et al. Under the null hypothesis the test statistic is 

asymptotically normally distributed.  

 

3.2 VaR Forecast Evaluation 

We forecast VaR for three different quantiles: 1%, 5% and 10% for both tails of the distribution since we 

consider the risk of both long and short positions. We place more emphasis on the 5
th
 quantile because the 

sample size of expected violations contains enough extreme observations to be used in statistical tests 

boosting their power. We also closely examine the 1% quantile that contains important information about 

the extreme tails of the distribution although it has a smaller number of expected violations. We evaluate 

the VaR forecasts following the framework of Christoffersen (1998) designed for evaluating the accuracy 

of out-of-sample interval forecasts. 

Unconditional Coverage 

Since VaR is reported at a specified confidence level (1-a%), we expect it to be exceeded a% of times in 

the backtest. Of course, we cannot expect the % of exceptions to match exactly a% since there is 

randomness. To test whether the exceptions are a result of randomness or of a systematic bias in our 

methodology, we use the non-parametric Bernouli trials test. Under the null hypothesis that VaR is 

correctly estimated, the number of exceptions x of a sample size N, follows a binominal probability 

distribution: 

 ( )  ( 
 
)  (   )     

Since our backtest sample is large, according to the central limit theorem, we can approximate the 

binominal distribution by the normal distribution and estimate the z-score of the number of exceptions as: 

  
    

  (   ) 
 

At 95% confidence level we would expect to see the z-score lying between -1.96 and 1.96. Values higher 

(lower) than the cutoff value of 1.96 (-1.96) lead us to reject the null hypothesis that our VaR model is 

unbiased and indicate systematic underestimation (overestimation) of risk. We also look at the upside and 

downside VaR exceptions separately since a good VaR model should be directionally unbiased expecting 

similar number of exceptions from both sides.  

The above test is equivalent to the log-likelihood test: 

            (   )          (   ) (     )     
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Which is asymptotically distributed chi-squared with one degree of freedom under the null hypothesis that 

p is the true probability. At 95% confidence level values of LRuc>3.84 lead to rejection of the null. 

Independence 

The unconditional coverage test compares the overall number of VaR violations with the expected 

number of violations ignoring the time variation in the data. In other words, it tells us nothing about how 

close the violations are and if there is any clustering. Theoretically, violations should be spread evenly 

over time.  

To test the hypothesis that the forecast is accurate and that there is no clustering in violations we employ 

Christoffersen’s (1998) independence test. The independence test statistic (LRind) tests for clustering in 

violations modeling them as a binary first-order Markov chain with transition matrix: 

  [
        

        
] 

Where     is the probability of a violation after a day without a violation, whereas     is the probability 

of a violation after observing a violation the previous day. We estimate the probabilities by counting the 

days where we had a violation conditional on the previous day. More specifically,     is the number of 

days where there was no violation following a no-violation day,     is the number of days where there 

was a violation following a no-violation day,     is the number of days without violation following a 

violation, and     is the number of days with a violation following a violation. 

The test statistic conditional on the first observation is: 

          [ (       )(   )(       )]       (     )
      

   (     )
      

     

The likelihood ratio test is also asymptotically distributed chi-squared with one degree of freedom under 

the null hypothesis of independence. At 95% confidence level values of LRind>3.84 lead to rejection of 

the null. 

The unconditional coverage and the independence properties are separate and distinct and must both be 

satisfied by an accurate VaR model. In other words, we want the sequence of VaR violations to be  

identically and independently distributed as a Bernoulli random variable. Thus, we will be looking for 

models that pass both tests.  

Finally, we evaluate the effectiveness of the VaR methods looking at the magnitude of the exceptions. In 

other words, how wrong was our estimation when the VaR threshold was crossed. We estimate the 

violation ratios as 

                
|  |

    ̂

 

Where     ̂ is our VaR estimate for a given confidence interval. For example, a ratio of 1.5 means that 

the violation was 50% higher than our VaR estimate. We report the median, 90
th
 percentile and max 

(worst) violation ratios.  
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4. Empirical Results 

4.1 Data and Estimation 

Our dataset covers the period January 1, 2000 to September 30, 2015, with daily prices for E-mini S&P 

500 and 10-Year US Note futures coming from Morningstar LIM. Since the GARCH models require a 

long training sample, we start all our out-of-sample comparisons from January 2004, allowing enough 

time for the GARCH models to be estimated. In all calculations we are using log prices and returns. The 

Implied Volatility of S&P 500 is the VIX index whereas the Implied Volatility of the 10-Year US Note is 

the TYVIX. Both indexes come from CBOE and are estimated under the same model-free methodology.  

At the end of each day, we generate one day-ahead volatility forecast using each model with its pre-

specified look-back and training period and we compare it to next day’s volatility proxy. We follow the 

same process for VaR forecasts using the volatility forecast and the relevant quantile. More specifically, 

we estimate the following models using the selected parameters, look-backs and training periods that are 

mostly used and cited in the industry and academic research. 

 Standard Deviation: Rolling over the last 30 days (STD_30) 

 Range-Based Volatility 

1. Parkinson: Rolling window over the last 30 days (PARK_30) 

2. Garman & Klass: Rolling window over the last 30 days (GK_30) 

3. Roger & Satchell : Rolling window over the last 30 days (RS_30) 

4. Yang & Zhang: Rolling window over the last 30 days (YZ_30) 

 GARCH Volatility 

1. Exponential Moving Average using the RiskMetrics lambda=0.94 (EWMA) 

2. GARCH(1,1): Estimated using an expanding window (GARCH) 

3. GARCH(1,1): Rolling 1,000 observations window (GARCH-R) 

4. TARCH(1,1,1): Estimated using an expanding window (TARCH) 

5. EGARCH(1,1,1): Estimated using an expanding window (EGARCH) 

 Implied Volatility: VIX and TYVIX value of the previous day divided by      (IV) 

 

4.2 Descriptive Statistics 

Table 3 reports the descriptive statistics for the volatility estimators used. We see that Implied Volatility 

(IV) is biased higher than the rest of the volatility estimators because of its volatility premium. On the 

contrary, range-based estimators are biased lower, mainly because of the omission of the overnight move. 

All volatility estimators are highly correlated with the average pairwise correlation 89% in SP and 92% in 

the 10-Year. Nevertheless, there is evidence that different volatility estimators contain different pieces of 

information. More specifically, there are clusters created depending on the data that each estimator uses: 

a) Range-based estimators (RARK, RS, GK) are highly correlated and constitute a separate cluster while 

the YZ is between range-based and close-to-close estimators, b) Implied Volatility has the lowest average 

correlation with the rest of volatility estimators and forms a cluster on its own. This was expected since it 

contains an insurance premium and is forward-looking whereas the rest of the estimators are historical. c) 
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Close-to-Close estimators (STD, EWMA and GARCH models) form another cluster with GARCH 

models constituting a sub-cluster, and d) for the S&P 500, the asymmetric GARCH models form another 

sub-cluster.   

[Table 3 about here] 

 

4.3 Volatility Forecasting Results 

 

We evaluate the volatility forecasts by assessing the out-of-sample volatility forecast losses. Table 4 

summarizes the forecasting results for each model using both the QL and the RMSE loss functions with 

squared returns (  
 ), adjusted range (   

 ) and realized volatility (   
 ) as a volatility proxies. We can 

see that QL and MSE losses based on RV and RG are smaller than those based on   
 for both S&P 500 

and 10-Year Note due to the improved efficiency of both volatility proxies over the squared returns. Also, 

the volatility of the 10-Year Note appears to be more forecastable than that of the S&P 500 producing 

smaller QL losses for each estimator. The choices of loss function and volatility proxy do not change the 

rankings substantially, but there is a tendency for GARCH models to perform better when the squared 

return and realized variance are used as proxies, whereas range-based models perform better when the 

adjusted range is used. Also, range-based models on average generate lower forecasting errors than the 

standard deviation while GARCH models systematically outperform the other two close-to-close 

volatility estimators (STD and EWMA). Regarding GARCH models, it appears that the use of an 

expanding window instead of a rolling window produces more accurate forecasts and the asymmetric 

versions are better in equities capturing the leverage effect, but they do not improve the symmetric ones in 

the 10-Year Note.   

[Table 4 about here] 

We also estimate the Diebold-Mariano pairwise statistics and report the results in Table 5. The results 

confirm that the TARCH model is superior from the rest in the S&P 500 irrespective of the volatility 

proxy that is being used. On the contrary, the results are mixed for the 10-Year depending on the volatility 

proxy. Implied Volatility and YZ_30 appear to deliver superior forecasts under the squared return proxy, 

whereas Parkinson ranks first when the adjusted range is used. 

[Table 5 about here] 

 

4.4 VaR Backtesting Results 

In a similar fashion, we estimate the out-of-sample one day-ahead VaR forecasts under the parametric 

approach multiplying the volatility forecast by the normal quantile. We also estimate the QML-GARCH 

models by multiplying the empirical quantiles after fitting a GARCH model with the GARCH volatility 

forecasts. For space reasons we do not report the results from the Garman & Klass (GK) and Roger & 

Satchell (RS) estimators since their results are identical with the Parkinson estimator. We also exclude the 

rolling GARCH since we showed that its forecasting power is weaker compared to GARCH estimated 
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over an expanding window. We examine three different quantiles 1%, 5% and 10% and we report the 

percentage of exceptions of each model, their statistical significance along with the violation ratios and P-

values of the independence test in Table 6.    

[Table 6 about here] 

For the S&P 500, we can see that all models have more downside exceptions (when the stock index is 

down) than upside. This shows that the distribution is not symmetric with the left tail fatter and the right 

tail thinner. As a result, any volatility forecast based on analytic VaR with normal quantiles will fail, 

underestimating the left tail and overestimating the right tail. This does not mean that the volatility 

forecast is bad, but that the distribution is not correctly specified. Parkinson estimator is biased 

downwards because it ignores the overnight move leading to systematic risk underestimation. The result 

(not reported here) holds for the rest of range-based estimators. On the other hand, implied volatility 

produces upwards biased VaR forecasts due to the volatility premium, making it a bad risk indicator. The 

superiority of GARCH models in volatility forecasting is evident when we compare their VaR forecasts 

based on the normal quantiles with the rest of the models. They offer the best parametric VaR forecasts 

passing the tests of unconditional coverage and independence, failing only at the 1% quantile. This shows 

that a more accurate volatility forecast can produce a superior and adequate VaR forecast, except for the 

lower tail, even if the distribution is mis-specified. QML-GARCH models, and specifically QML-

GARCH and QML-TARCH, fill that gap offering the most accurate VaR forecasts beating all other 

models and methods. The combination of superior volatility forecast from the GARCH models with the 

estimation of the empirical quantile that allows them to incorporate distributional asymmetries delivers 

robust and unbiased results for all quantiles passing all statistical tests at all quantiles. 

In contrast with the S&P 500, the results for the 10-Year Note show that most of the estimators do an 

adequate job in estimating risk. This is a result of a) higher forecastability of bond volatility, and b) more 

symmetric distribution of bond returns. More specifically, EWMA and STD produce good VaR forecasts 

for the 5% and 10% quantiles passing the tests of unconditional coverage and independence, failing only 

at the 1% quantile. Yang-Zhang (YZ) does a remarkable job at the lowest quantiles (1% and 5%) and is 

slightly biased higher at the 10% quantile, passing all the tests of unconditional coverage and 

independence for all quantiles. On the other hand, Parkinson, again, underestimates risk, whereas Implied 

Volatility systematically overestimates it. In contrast with the S&P 500 results, GARCH models do not 

generate superior VaR forecasts from the rest of the models having a tendency to underestimate VaR at 

the lowest quantile and overestimate it at the 10% quantile. However, QML-GARCH models and 

specifically QML-GARCH and QML-TARCH, deliver, again, superior results passing all the statistical 

tests at all quantiles and outperforming the rest of the models and methods. This result shows how 

important is the flexibility to fit the empirical distribution. 

 

5. Conclusion 

Volatility forecasting has paramount importance in position sizing and risk management of CTAs. In this 

paper we take a pragmatic approach and compare different volatility estimators that are widely used in 

industry and academia, examining their one-day ahead out-of-sample forecasts from a statistical and 

Value-at-Risk perspective.  
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Although we do not find evidence for a volatility estimator that is statistically superior in the assets we 

study, we show that asymmetric GARCH models (TARCH and EGARCH) generate superior forecasts for 

the S&P 500, whereas symmetric models such as GARCH, Yang-Zhang along with the implied volatility 

perform better in the 10-Year Note. In other words, the volatility process of each asset can differ and a 

good volatility estimator should incorporate the empirical regularities related to each asset. We also find 

evidence that the volatility of the 10-Year Note is more forecastable than that of the S&P 500 producing 

smaller errors.    

Furthermore, we show that improving the volatility forecast can generate superior VaR forecasts that can 

be accurate under the normal distribution failing the tests only at the lowest quantile. More specifically, 

GARCH models produce superior forecasts failing only at the 1% quantile. More importantly we show 

that the reason that most models fail is mainly because the distribution is mispecified and badly 

approximated by the normal. Finally, we show that the semi-parametric QML-GARCH models that use 

the empirical quantiles of the distribution along with GARCH volatility forecast address that issue and 

generate superior VaR forecasts outperforming all other methods in all quantiles. 
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Table 1 

Correlation Matrix 

 

Spearman correlation of different volatility proxies for S&P 500 estimated daily over the period January 

1, 2000 to September 30, 2015.    is the squared daily returns,     is the squared daily adjusted range 

and      is the 5-minute realized variance. 

 

Spearman Pairwise Correlations 

             

   100% 

      70% 100% 

     53% 86% 100% 

 

Table 2 

Engle and Ng (1993) Asymmetric Regression T-stats 

 

The table below reports the results from the Engle and Ng (1993) regressions testing for asymmetric 

effects. We estimated the regression using the three different volatility proxies (squared returns (  ), 

squared adjusted range (   ), and the 5-minute realized variance (   )) for the true variance (    
 ) 

over the period January 1, 2000 to September 30, 2015.  

    
              

In the Sign Bias test,    takes the value of 1 if the return is negative and zero otherwise; t-stat values 

above 2 support the existence of asymmetric effects. In the Negative Size Bias test,    equals the daily 

return (  ) when the latter is negative and zero otherwise; t-stat values above 2 show a positive 

relationship between the size of negative returns and the volatility of the next day. Finally, in the Positive 

Size Bias test,    equals the daily return when the latter is positive and zero otherwise; t-stat values above 

2 show a positive relationship between the size of positive returns and next day’s volatility. The standard 

errors are estimated using the Newey-West robust estimator with 8 lags. 

 

Regression T-stats* 

Vol. Proxy Sign Bias Negative Size Bias Positive Size Bias 

E-mini S&P 500 

   2.38 -4.37 1.38 

    3.60 -4.48 3.37 

    4.02 -4.68 4.05 

10-Year US Note 

   1.49 -3.60 1.64 

    0.53 -3.79 3.65 
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Table 3 

Descriptive Statistics, Correlation Matrices and Clustering Diagrams 

 

The tables present the descriptive statistics and the correlation matrix of 10 different volatility estimators 

for S&P 500 and 10-year Note: a) Standard deviation (STD), b) Parkinson (PARK), c) Garman and Klass 

(GK), d) Roger and Satchell (RS), e) Yang and Zhang (YZ), f) GARCH (1,1), g) TARCH (1,1,1), h) 

EGARCH(1,1,1), i) Exponentially-weighted moving average (EWMA), j) Implied Volatility (IV). The 

estimation period is 30-days except for GARCH where we use an expanding window and for EWMA 

where we use a decay factor of 0.95. The dataset covers the period January 1, 2004 to October 30, 2009. 

S&P 500 

Summary Statistics (Annualized) 

 

STD PARK GK RS YZ GARCH TARCH EGARCH EWMA IV 

Average 17% 14% 14% 14% 17% 17% 17% 17% 17% 19% 

St.Dev. 12% 9% 9% 9% 11% 11% 11% 10% 11% 9% 

 

Spearman Pairwise Correlations 

 

STD PARK GK RS YZ GARCH TARCH EGARCH EWMA IV 

STD 100% 94% 93% 91% 95% 94% 86% 84% 96% 83% 

PARK 94% 100% 99% 98% 95% 89% 84% 82% 92% 83% 

GK 93% 99% 100% 100% 96% 88% 82% 80% 91% 84% 

RS 91% 98% 100% 100% 96% 86% 81% 79% 90% 84% 

YZ 95% 95% 96% 96% 100% 89% 81% 79% 94% 86% 

GARCH 94% 89% 88% 86% 89% 100% 95% 90% 97% 88% 

TARCH 86% 84% 82% 81% 81% 95% 100% 97% 89% 86% 

EGARCH 84% 82% 80% 79% 79% 90% 97% 100% 86% 83% 

EWMA 96% 92% 91% 90% 94% 97% 89% 86% 100% 87% 

IV 83% 83% 84% 84% 86% 88% 86% 83% 87% 100% 
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10-year Note 

Summary Statistics (Annualized) 

 

STD PARK GK RS YZ GARCH TARCH EGARCH EWMA IV 

Average 6% 5% 5% 5% 6% 6% 6% 6% 6% 7% 

St.Dev. 2% 2% 1% 2% 2% 2% 2% 2% 2% 2% 

 

Spearman Pairwise Correlations 

 

STD PARK GK RS YZ GARCH TARCH EGARCH 

EWM

A IV 

STD 100% 92% 89% 86% 93% 97% 97% 96% 98% 90% 

PARK 92% 100% 99% 98% 95% 92% 92% 90% 91% 88% 

GK 89% 99% 100% 99% 96% 90% 90% 87% 88% 87% 

RS 86% 98% 99% 100% 96% 86% 86% 85% 85% 84% 

YZ 93% 95% 96% 96% 100% 92% 92% 91% 92% 89% 

GARCH 97% 92% 90% 86% 92% 100% 100% 99% 98% 93% 

TARCH 97% 92% 90% 86% 92% 100% 100% 99% 98% 93% 

EGARCH 96% 90% 87% 85% 91% 99% 99% 100% 97% 92% 

EWMA 98% 91% 88% 85% 92% 98% 98% 97% 100% 92% 

IV 90% 88% 87% 84% 89% 93% 93% 92% 92% 100% 
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Table 4 

Forecast Losses 

The table reports the one day-ahead out-of-sample Quasi Likelihood (QL) and Root Mean Square Error 

(RMSE) losses for each model, market and volatility proxy. Bold values indicate the best volatility 

model(s) for each volatility proxy.    

 

Instrument E-mini S&P 500 10-Year US Note 

Vol. Proxy     
       

       
      

       
  

 

RMSE QL RMSE QL RMSE QL RMSE QL RMSE QL 

STD_30 5.813 1.583 3.077 0.495 3.035 0.335 0.375 1.209 0.215 0.481 

PARK_30 5.780 1.668 2.281 0.426 2.357 0.335 0.374 1.276 0.193 0.432 

GK_30 5.779 1.665 2.305 0.429 2.384 0.341 0.373 1.269 0.192 0.435 

RS_30 5.770 1.668 2.339 0.435 2.415 0.349 0.373 1.273 0.193 0.442 

YZ_30 5.685 1.555 2.817 0.494 2.794 0.338 0.369 1.192 0.208 0.495 

EWMA 5.714 1.545 2.858 0.472 2.821 0.313 0.372 1.198 0.210 0.471 

GARCH 5.680 1.510 2.573 0.462 2.494 0.294 0.370 1.195 0.203 0.480 

GARCH-R 5.678 1.508 2.573 0.452 2.484 0.288 0.371 1.209 0.204 0.483 

TARCH 5.532 1.461 2.370 0.426 2.284 0.259 0.371 1.196 0.204 0.481 

EGARCH 5.455 1.458 1.927 0.442 1.906 0.274 0.370 1.202 0.205 0.513 

IV 5.521 1.528 2.211 0.598 2.157 0.402 0.364 1.177 0.207 0.520 
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Table 5 

Diebold-Mariano Pairwise Forecast Comparisons 

The table reports the Dieblod-Mariano pairwise t-stats using the QL loss function for the 10-year Note 

and the S&P 500. Values above 2 indicate that the model in x-axis is statistically superior from the model 

in the y-axis, whereas values below -2 indicate superiority of the y-axis models. Bold values indicate the 

superior models.  

 

 
US 10-Year Note 

Volatility Proxy:     
  

 
Superiority of model 

 

 

PARK_30 GK_30 RS_30 YZ_30 EWMA GARCH GARCH-R TARCH EGARCH IV 

Over 

Model 

STD_30 -3.86 -3.38 -3.47 2.17 2.16 2.05 -0.03 1.94 0.88 2.57 

PARK_30  2.12 0.50 4.82 4.55 4.65 3.78 4.58 3.76 4.03 

GK_30   -1.79 4.60 4.09 4.23 3.36 4.17 3.40 3.76 

RS_30    4.80 4.16 4.33 3.49 4.26 3.52 3.86 

YZ_30     -0.94 -0.60 -2.03 -0.70 -1.42 1.40 

EWMA      0.61 -1.59 0.48 -0.50 1.79 

GARCH       -3.30 -0.96 -1.75 1.76 

GARCH-R        3.11 1.22 2.77 

TARCH         -1.63 1.84 

EGARCH          2.86 

Volatility Proxy:      
  

 
Superiority of model 

 

 

PARK_30 GK_30 RS_30 YZ_30 EWMA GARCH GARCH-R TARCH EGARCH IV 

Over 
Model 

STD_30 4.84 4.49 3.66 -2.88 3.32 0.34 -0.58 0.02 -7.77 -5.44 

PARK_30  -1.11 -2.77 -6.16 -3.92 -4.75 -5.02 -4.84 -7.26 -6.03 

GK_30   -4.59 -6.15 -3.66 -4.50 -4.75 -4.58 -7.03 -5.90 

RS_30    -5.42 -2.88 -3.68 -3.93 -3.76 -6.22 -5.36 

YZ_30     5.01 3.39 2.24 3.08 -4.09 -4.05 

EWMA      -3.05 -3.45 -3.39 -11.43 -6.86 

GARCH       1.86 -3.54 -16.29 -6.34 

GARCH-R        1.27 -10.68 -5.62 

TARCH         -16.12 -6.12 

EGARCH          -1.37 

 

(Continued on next page) 
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(Continued from previous page) 

 
E-mini S&P 500 

Volatility Proxy:     
  

 
Superiority of model 

 

 

PARK_30 GK_30 RS_30 YZ_30 EWMA GARCH GARCH-R TARCH EGARCH IV 

Over 
Model 

STD_30 -3.89 -3.57 -3.65 3.09 4.35 6.21 4.96 7.9 7.14 2.03 

PARK_30  0.97 -0.12 5.42 5.22 5.34 5.05 6.26 6.04 3.25 

GK_30   1.25 5.26 4.96 5.12 4.86 6.03 5.84 3.15 

RS_30    5.41 5.1 5.2 4.93 6.1 5.9 3.21 

YZ_30     0.94 3.39 2.92 5.43 5.06 0.95 

EWMA      3.16 2.46 5.57 4.85 0.54 

GARCH       0.4 6.99 4.9 -1.11 

GARCH-R        5.51 4.35 -1.35 

TARCH         0.35 -3.9 

EGARCH          -4.19 

Volatility Proxy:      
  

 
Superiority of model 

 

 

PARK_30 GK_30 RS_30 YZ_30 EWMA GARCH GARCH-R TARCH EGARCH IV 

Over 

Model 

STD_30 5.33 5 4.21 0.33 4.76 4.81 5.09 7.54 5.56 -8.61 

PARK_30  -2.02 -3.59 -6.17 -3.06 -2.04 -1.39 -0.05 -0.82 -7.57 

GK_30   -3.96 -5.9 -2.84 -1.85 -1.21 0.13 -0.64 -7.45 

RS_30    -4.95 -2.28 -1.43 -0.85 0.42 -0.32 -6.9 

YZ_30     3.32 3.5 3.98 5.96 4.44 -7.94 

EWMA      1.79 2.85 6.12 3.61 -11.84 

GARCH       3.88 9.69 4.14 -18.33 

GARCH-R        6.49 1.98 -21.1 

TARCH         -5.59 -25.17 

EGARCH          -22.12 

Volatility Proxy:      
  

 
Superiority of model 

 

 

PARK_30 GK_30 RS_30 YZ_30 EWMA GARCH GARCH-R TARCH EGARCH IV 

Over 
Model 

STD_30 -0.05 -0.37 -0.78 -0.67 5.45 4.81 4.36 6.44 4.93 -5.27 

PARK_30  -2.86 -4.13 -0.24 1.3 1.62 1.73 2.67 2.13 -2.32 

GK_30   -5.35 0.22 1.54 1.77 1.87 2.76 2.24 -2.02 

RS_30    0.76 1.9 2.02 2.1 2.95 2.45 -1.68 

YZ_30     4.46 3.39 3.33 4.85 3.85 -3.8 

EWMA      2 2.14 4.25 2.95 -6.45 

GARCH       2.05 8.29 3.85 -16.99 

GARCH-R        7.03 2.81 -19.41 

TARCH         -5.74 -27.07 

EGARCH          -23.67 
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Table 6 

Out-of-sample VaR one-step ahead forecasts  

The table reports a) the target probability (a%), b) the percentage of exceptions corresponding to each 

quantile defined as the number of days where the daily return exceeded the estimated VaR for a given 

confidence interval with the upside and downside separately, c) the violation ratios measured by the ratio 

of the absolute daily return divided by the estimated VaR for the days with exceptions, d) Likelihood P-

values of the independence test. P-values below 0.05 signify failure to reject the null hypothesis of 

Independence (LRind). The asterisks in the column of Overall Exceptions denote failure to reject the null 

hypothesis of unconditional coverage that the number of exceptions equals expectations (a%). The 

estimators marked in bold, pass the statistical tests of unconditional coverage and independence, 

delivering the most accurate results in line with the ex-ante expectations.     

 

 

 

 
E-mini S&P 500 

  Exceptions (%) Violation Ratios P-value 

 

a% Overall Downside Upside Median  90th prct.  Max  LRind 

STD_30 1 2.4% 1.8% 0.7% 1.22 1.48 3.38 0.01 

5 6.4% 4.0% 2.4% 1.23 1.80 4.44 0.01 

10 10.9%* 6.2% 4.7% 1.25 1.94 5.29 0.01 

PARK_30 1 4.7% 3.0% 1.7% 1.19 1.65 3.52 0.00 

 5 10.9% 6.2% 4.7% 1.25 1.87 4.62 0.00 

 10 16.9% 8.9% 8.0% 1.30 2.05 5.51 0.00 

YZ_30 1 3.3% 2.2% 1.1% 1.17 1.46 3.35 0.00 

 5 6.2% 4.0% 2.2% 1.21 1.68 4.41 0.00 

 10 10.4%* 6.1% 4.3% 1.24 1.86 5.25 0.04 

EWMA 1 2.1% 1.6% 0.5% 1.20 1.51 3.63 0.00 

 5 6.3% 4.0% 2.3% 1.20 1.72 4.77 0.00 

 10 10.6%* 6.1% 4.5% 1.26 1.88 5.68 0.39 

GARCH 1 1.8% 1.4% 0.4% 1.14 1.43 3.32 0.09 

 5 5.4%* 3.6% 1.8% 1.20 1.60 4.36 0.64 

 10 9.3%* 5.6% 3.7% 1.25 1.78 5.20 0.05 

TARCH 1 1.5% 1.3% 0.2% 1.17 1.38 3.23 0.24 

 5 5.5%* 3.8% 1.7% 1.18 1.62 4.24 0.49 

 10 9.4%* 5.8% 3.6% 1.24 1.76 5.06 0.02 

EGARCH 1 1.5% 1.3% 0.2% 1.16 1.43 3.10 0.26 

 5 5.0%* 3.5% 1.5% 1.19 1.60 4.08 0.87 

 10 8.6% 5.5% 3.1% 1.23 1.75 4.86 0.08 

QML-GARCH 1 1.3%* 0.8% 0.5% 1.12 1.33 3.07 0.32 

 5 5.2%* 3.0% 2.2% 1.18 1.58 4.14 0.26 

 10 9.5%* 5.1% 4.4% 1.24 1.88 5.04 0.22 

QML-TARCH 1 1.2%* 0.7% 0.5% 1.09 1.25 2.92 0.46 

 5 5.0%* 3.0% 2.0% 1.15 1.54 4.04 0.57 

 10 9.3%* 5.2% 4.1% 1.24 1.70 4.85 0.02 
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QML-EGARCH 1 0.9%* 0.5% 0.4% 1.17 1.37 2.82 0.48 

 5 4.8%* 2.9% 1.8% 1.16 1.54 3.97 0.23 

 10 8.7%* 5.0% 3.7% 1.25 1.69 4.79 0.18 

IV 1 0.4% 0.4% 0% 1.18 1.46 2.22 0.75 

 5 2.2% 1.8% 0.4% 1.14 1.53 2.92 0.62 

 10 4.7% 3.3% 1.4% 1.16 1.50 3.48 0.66 

 10-Year US Note 

  Exceptions (%) Violation Ratios P-value 

 

a% Overall Downside Upside Median  90th prct.  Max  LRind 

STD_30 1 1.7% 0.9% 0.8% 1.17 1.43 1.93 0.19 

5 5.1%* 2.7% 2.4% 1.18 1.69 2.54 0.12 

10 10%* 5.1% 4.9% 1.20 1.72 3.02 0.89 

PARK_30 1 3.4% 1.8% 1.7% 1.17 1.52 2.79 0.38 

 5 9.4% 4.8% 4.7% 1.19 1.74 3.67 0.00 

 10 15.3% 7.2% 8.1% 1.26 1.87 4.37 0.00 

YZ_30 1 1.2%* 0.6% 0.6% 1.13 1.51 2.12 0.34 

 5 4.5%* 2.3% 2.1% 1.18 1.53 2.79 0.38 

 10 8.7% 4.5% 4.2% 1.20 1.71 3.33 0.81 

EWMA 1 1.5% 0.8% 0.7% 1.16 1.51 2.10 0.24 

 5 5.3%* 2.8% 2.6% 1.20 1.72 2.76 0.60 

 10 10.1%* 5.1% 5.0% 1.20 1.73 3.29 0.50 

GARCH 1 1.4% 0.6% 0.8% 1.14 1.54 2.13 0.27 

 5 4.7%* 2.5% 2.2% 1.18 1.62 2.80 0.12 

 10 8.7% 4.4% 4.3% 1.22 1.71 3.34 0.26 

TARCH 1 1.4% 0.6% 0.8% 1.14 1.55 2.12 0.27 

 5 4.6%* 2.4% 2.2% 1.19 1.63 2.78 0.14 

 10 8.7% 4.4% 4.3% 1.22 1.71 3.32 0.24 

EGARCH 1 1.2%* 0.5% 0.6% 1.11 1.52 2.03 0.41 

 5 4.0% 2.1% 1.8% 1.19 1.60 2.67 0.74 

 10 7.9% 4.1% 3.8% 1.19 1.63 3.18 0.92 

QML-GARCH 1 0.9%* 0.3% 0.6% 1.17 1.56 2.06 0.48 

 5 4.7%* 2.2% 2.5% 1.18 1.64 2.84 0.29 

 10 9.4%* 4.4% 5.0% 1.21 1.73 3.41 0.15 

QML-TARCH 1 0.9%* 0.3% 0.6% 1.17 1.53 2.06 0.50 

 5 4.8%* 2.3% 2.5% 1.18 1.67 2.81 0.23 

 10 9.4%* 4.4% 5.0% 1.21 1.72 3.39 0.15 

QML-EGARCH 1 0.7%* 0.3% 0.4% 1.20 1.52 1.99 0.56 

 5 3.8% 1.9% 1.9% 1.18 1.65 2.68 0.19 

 10 8.5% 3.9% 4.5% 1.20 1.67 3.27 0.85 

IV 1 0.6% 0.3% 0.3% 1.07 1.22 1.84 0.50 

 5 3.0% 1.7% 1.3% 1.11 1.40 2.42 0.65 

 10 5.6% 3.0% 2.6% 1.20 1.61 2.89 0.42 

 


